An Introduction to Reservoir Simulation Using MATLAB/GNU Octave
Rules of Thumb for Mechanical Engineers
Fluid Mechanics
Compressible Fluid Flow
Analytical Fluid Dynamics
Gas Turbines
Aerodynamics for Engineering Students
Discontinuous Galerkin Method
Fluid Mechanics Fundamentals and Applications
Modern Compressible Flow
Pipe Flow
Incompressible Flow
Hypersonic and High Temperature Gas Dynamics
Modern Compressible Flow, with Historical Perspective
Fluid Mechanics
Modern Compressible Flow: With Historical Perspective
Energy Systems Engineering: Evaluation and Implementation
Fundamentals of Aerodynamics
Compressible Fluid Flow
Convection Heat Transfer
Fundamentals of Compressible Flow
Gas Dynamics
Computational Fluid Dynamics: Principles and Applications
Boundary-Layer Theory
Fluid Mechanics for Engineers
Modern Compressible Flow
Fundamentals of Gas Dynamics
Computer Programming
FUNDAMENTALS OF COMPRESSIBLE FLUID DYNAMICS
Handbook of Industrial Crystallization
Viscous Fluid Flow 3e
Polymer Solutions
Mechanics of Flight
Schaum's Outline of Fluid Mechanics
Computational Methods for Fluid Dynamics
Process Dynamics and Control
Cavitation and Bubble Dynamics
Fox and McDonald's Introduction to Fluid Mechanics
Numerical Methods for Flows
John D. Anderson's textbooks in aeronautical and aerospace engineering have been a cornerstone of McGraw-Hill's success in the engineering discipline for more than two decades. The fifth SI edition of Fundamentals of Aerodynamics continues to offer the most
reliable, interesting and up-to-date resources for students and teachers of aerodynamics. Users of past editions will appreciate the continued use of design boxes, historical contents, plentiful worked examples, chapter-opening road maps and other pedagogical features that play a supporting role in Anderson's focus on fundamental concepts. NEW FEATURES * New sections on airplane lift and drag, the blended-wing-body concept, the origin of the swept-wing concept, supersonic flow over cones, hypersonic viscous flow and aerodynamic heating and the design of hypersonic waverider configurations. * Many additional worked examples and homework problems to provide even more key concept practice for students. * Shortened and streamlined Part 4, "Viscous Flow". This textbook addresses the elementary concepts of flight mechanics, everything from the equations of motion to aircraft performance. Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes. The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design. Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the field Covers all aspects of industrial crystallization in a single, complete volume Meant as a senior or graduate level elective in Mechanical Engineering, this text includes a number of problems, explanations of, & references to ongoing controversies & trends. It contains information on technological advances, such
as micro- and nano-technology, turbulence modeling, & computational fluid dynamics. The most teachable book on incompressible flow— now fully revised, updated, and expanded Incompressible Flow, Fourth Edition is the updated and revised edition of Ronald Panton's classic text. It continues a respected tradition of providing the most comprehensive coverage of the subject in an exceptionally clear, unified, and carefully paced introduction to advanced concepts in fluid mechanics. Beginning with basic principles, this Fourth Edition patiently develops the math and physics leading to major theories. Throughout, the book provides a unified presentation of physics, mathematics, and engineering applications, liberally supplemented with helpful exercises and example problems. Revised to reflect students' ready access to mathematical computer programs that have advanced features and are easy to use, Incompressible Flow, Fourth Edition includes: Several more exact solutions of the Navier-Stokes equations Classic-style Fortran programs for the Hiemenz flow, the Psi-Omega method for entrance flow, and the laminar boundary layer program, all revised into MATLAB A new discussion of the global vorticity boundary restriction A revised vorticity dynamics chapter with new examples, including the ring line vortex and the Fraenkel-Norbury vortex solutions A discussion of the different behaviors that occur in subsonic and supersonic steady flows Additional emphasis on composite asymptotic expansions Incompressible Flow, Fourth Edition is the ideal coursebook for classes in fluid dynamics offered in mechanical, aerospace, and chemical engineering programs. This physics-first, design-oriented textbook explains concepts of gas turbine secondary flows, reduced-order modeling methods, and 3-D CFD. Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of
numerous and diverse real-world engineering examples. The text helps students develop
an intuitive understanding of fluid mechanics by emphasizing the physics, using figures,
numerous photographs and visual aids to reinforce the physics. The highly visual
approach enhances the learning of Fluid mechanics by students. This text distinguishes
itself from others by the way the material is presented - in a progressive order from
simple to more difficult, building each chapter upon foundations laid down in previous
chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be
learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with
the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new
system that helps your students learn more easily and gives you the ability to customize
your homework problems and assign them simply and easily to your students. Problems
are graded automatically, and the results are recorded immediately. Natural Math
Notation allows for answer entry in many different forms, and the system allows for easy
customization and authoring of exercises by the instructor. Computational Fluid Dynamics
(CFD) is an important design tool in engineering and also a substantial research tool in
various physical sciences as well as in biology. The objective of this book is to provide
university students with a solid foundation for understanding the numerical methods
employed in today's CFD and to familiarise them with modern CFD codes by hands-on
experience. It is also intended for engineers and scientists starting to work in the field of
CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a
reference handbook too. Each chapter includes an extensive bibliography, which provides
an excellent basis for further studies. This book includes selected contributions on applied
mathematics, numerical analysis, numerical simulation and scientific computing related
to fluid mechanics problems, presented at the FEF-“Finite Element for Flows” conference,
held in Rome in spring 2017. Written by leading international experts and covering state-of-the-art topics in numerical simulation for flows, it provides fascinating insights into and perspectives on current and future methodological and numerical developments in computational science. As such, the book is a valuable resource for researchers, as well as Masters and Ph.D students. New edition of the popular textbook, comprehensively updated throughout and now includes a new dedicated website for gas dynamic calculations. The thoroughly revised and updated third edition of Fundamentals of Gas Dynamics maintains the focus on gas flows below hypersonic. This targeted approach provides a cohesive and rigorous examination of most practical engineering problems in this gas dynamics flow regime. The conventional one-dimensional flow approach together with the role of temperature-entropy diagrams are highlighted throughout. The authors—noted experts in the field—include a modern computational aid, illustrative charts and tables, and myriad examples of varying degrees of difficulty to aid in the understanding of the material presented. The updated edition of Fundamentals of Gas Dynamics includes new sections on the shock tube, the aerospike nozzle, and the gas dynamic laser. The book contains all equations, tables, and charts necessary to work the problems and exercises in each chapter. This book’s accessible but rigorous style: Offers a comprehensively updated edition that includes new problems and examples. Covers fundamentals of gas flows targeting those below hypersonic. Presents the one-dimensional flow approach and highlights the role of temperature-entropy diagrams. Contains new sections that examine the shock tube, the aerospike nozzle, the gas dynamic laser, and an expanded coverage of rocket propulsion. Explores applications of gas dynamics to aircraft and rocket engines. Includes behavioral objectives, summaries, and check tests to aid with learning. Written for students in mechanical and aerospace engineering and professionals and researchers.
in the field, the third edition of Fundamentals of Gas Dynamics has been updated to include recent developments in the field and retains all its learning aids. This third edition provides chemical engineers with process control techniques that are used in practice while offering detailed mathematical analysis. Numerous examples and simulations are used to illustrate key theoretical concepts. New exercises are integrated throughout several chapters to reinforce concepts. Up-to-date information is also included on real-time optimization and model predictive control to highlight the significant impact these techniques have on industrial practice. And chemical engineers will find two new chapters on biosystems control to gain the latest perspective in the field.

Compressible Fluid Dynamics (or Gas Dynamics) has a wide range of applications in Mechanical, Aeronautical and Chemical Engineering. It plays a significant role in the design and development of compressors, turbines, missiles, rockets and aircrafts. This comprehensive and systematically organized book gives a clear analysis of the fundamental principles of Compressible Fluid Dynamics. It discusses in rich detail such topics as isentropic, Fanno, Rayleigh, simple and generalised one-dimensional flows. Besides, it covers topics such as conservation laws for compressible flow, normal and oblique shock waves, and measurement in compressible flow. Finally, the book concludes with detailed discussions on propulsive devices. The text is amply illustrated with worked-out examples, tables and diagrams to enable the students to comprehend the subject with ease. Intended as a text for undergraduate students of Mechanical, Aeronautical and Chemical Engineering, the book would also be extremely useful for practising engineers.

Second Edition, presents the fundamentals of classical compressible flow along with the latest coverage of modern compressible flow dynamics and high-temperature flows. The second edition maintains an engaging writing style and offers philosophical and historical perspectives on the topic. It also continues to offer a variety of problems-providing readers with a practical understanding. The second edition includes the latest developments in the field of modern compressible flow.

Polymer Solutions: An Introduction to Physical Properties offers a fresh, inclusive approach to teaching the fundamentals of physical polymer science. Students, instructors, and professionals in polymer chemistry, analytical chemistry, organic chemistry, engineering, materials, and textiles will find Iwao Teraoka’s text at once accessible and highly detailed in its treatment of the properties of polymers in the solution phase. Teraoka’s purpose in writing Polymer Solutions is twofold: to familiarize the advanced undergraduate and beginning graduate student with basic concepts, theories, models, and experimental techniques for polymer solutions; and to provide a reference for researchers working in the area of polymer solutions as well as those in charge of chromatographic characterization of polymers. The author’s incorporation of recent advances in the instrumentation of size-exclusion chromatography, the method by which polymers are analyzed, renders the text particularly topical. Subjects discussed include: Real, ideal, Gaussian, semirigid, and branched polymer chains Polymer solutions and thermodynamics Static light scattering of a polymer solution Dynamic light scattering and diffusion of polymers Dynamics of dilute and semidilute polymer solutions Study questions at the end of each chapter not only provide students with the opportunity to test their understanding, but also introduce topics relevant to polymer solutions not included in the main text. With over 250 geometrical model diagrams, Polymer Solutions is a necessary
reference for students and for scientists pursuing a broader understanding of polymers. This reference develops the fundamental concepts of compressible fluid flow by clearly illustrating their applications in real-world practice through the use of numerous worked-out examples and problems. The book covers concepts of thermodynamics and fluid mechanics which relate directly to compressible flow; discusses isentropic flow through a variable-area duct; describes normal shock waves, including moving shock waves and shock-tube analysis; explores the effects of friction and heat interaction on the flow of a compressible fluid; covers two-dimensional shock and expansion waves; provides a treatment of linearized flow; discusses unsteady wave propagation and computational methods in fluid dynamics; provides several numerical methods for solving linear and nonlinear equations encountered in compressible flow; offers modern computational methods for solving nonintegrable equations; and describes methods of measurement in high-speed flow. Suitable for the practicing engineer engaged in compressible-flow applications. Market: energy professionals including analysts, system engineers, mechanical engineers, and electrical engineers Problems and worked-out equations use SI units This is the most comprehensive introductory graduate or advanced undergraduate text in fluid mechanics available. It builds from the fundamentals, often in a very general way, to widespread applications to technology and geophysics. In most areas, an understanding of this book can be followed up by specialized monographs and the research literature. The material added to this new edition will provide insights gathered over 45 years of studying fluid mechanics. Many of these insights, such as universal dimensionless similarity scaling for the laminar boundary layer equations, are available nowhere else. Likewise for the generalized vector field derivatives. Other material, such as the generalized stream function treatment, shows how stream functions may be used in
three-dimensional flows. The CFD chapter enables computations of some simple flows and provides entrée to more advanced literature. *New and generalized treatment of similar laminar boundary layers. *Generalized treatment of streamfunctions for three-dimensional flow. *Generalized treatment of vector field derivatives. *Expanded coverage of gas dynamics. *New introduction to computational fluid dynamics. *New generalized treatment of boundary conditions in fluid mechanics. *Expanded treatment of viscous flow with more examples. Anderson's book provides the most accessible approach to compressible flow for Mechanical and Aerospace Engineering students and professionals. In keeping with previous versions, the 3rd edition uses numerous historical vignettes that show the evolution of the field. New pedagogical features--"Roadmaps" showing the development of a given topic, and "Design Boxes" giving examples of design decisions--will make the 3rd edition even more practical and user-friendly than before. The 3rd edition strikes a careful balance between classical methods of determining compressible flow, and modern numerical and computer techniques (such as CFD) now used widely in industry & research. A new Book Website will contain all problem solutions for instructors. The second edition of Analytical Fluid Dynamics presents an expanded and updated treatment of inviscid and laminar viscous compressible flows from a theoretical viewpoint. It emphasizes basic assumptions, the physical aspects of flow, and the appropriate formulations of the governing equations for subsequent analytical treatment. Topics covered incA new edition of the bestseller on convection heat transfer A revised edition of the industry classic, Convection Heat Transfer, Fourth Edition, chronicles how the field of heat transfer has grown and prospered over the last two decades. This new edition is more accessible, while not sacrificing its thorough treatment of the most up-to-date information on current research and applications in the field. One of the foremost
leaders in the field, Adrian Bejan has pioneered and taught many of the methods and practices commonly used in the industry today. He continues this book's long-standing role as an inspiring, optimal study tool by providing: Coverage of how convection affects performance, and how convective flows can be configured so that performance is enhanced. How convective configurations have been evolving, from the flat plates, smooth pipes, and single-dimension fins of the earlier editions to new populations of configurations: tapered ducts, plates with multiscale features, dendritic fins, duct and plate assemblies (packages) for heat transfer density and compactness, etc. New, updated, and enhanced examples and problems that reflect the author's research and advances in the field since the last edition. A solutions manual complete with hundreds of informative and original illustrations, Convection Heat Transfer, Fourth Edition is the most comprehensive and approachable text for students in schools of mechanical engineering. Anderson's book provides the most accessible approach to compressible flow for Mechanical and Aerospace Engineering students and professionals. In keeping with previous versions, the 3rd edition uses numerous historical vignettes that show the evolution of the field. New pedagogical features—"Roadmaps" showing the development of a given topic, and "Design Boxes" giving examples of design decisions—will make the 3rd edition even more practical and user-friendly than before. The 3rd edition strikes a careful balance between classical methods of determining compressible flow, and modern numerical and computer techniques (such as CFD) now used widely in industry & research. A new Book Website will contain all problem solutions for instructors. Separation Process Principles with Applications Using Process Simulator, 4th Edition is the most comprehensive and up-to-date treatment of the major separation operations in the chemical industry. The 4th edition focuses on using process simulators to design separation processes and prepares
readers for professional practice. Completely rewritten to enhance clarity, this fourth edition provides engineers with a strong understanding of the field. With the help of an additional co-author, the text presents new information on bioseparations throughout the chapters. A new chapter on mechanical separations covers settling, filtration and centrifugation including mechanical separations in biotechnology and cell lysis. Boxes help highlight fundamental equations. Numerous new examples and exercises are integrated throughout as well. Through ten editions, Fox and McDonald's Introduction to Fluid Mechanics has helped students understand the physical concepts, basic principles, and analysis methods of fluid mechanics. This market-leading textbook provides a balanced, systematic approach to mastering critical concepts with the proven Fox-McDonald solution methodology. In-depth yet accessible chapters present governing equations, clearly state assumptions, and relate mathematical results to corresponding physical behavior. Emphasis is placed on the use of control volumes to support a practical, theoretically-inclusive problem-solving approach to the subject. Each comprehensive chapter includes numerous, easy-to-follow examples that illustrate good solution technique and explain challenging points. A broad range of carefully selected topics describe how to apply the governing equations to various problems, and explain physical concepts to enable students to model real-world fluid flow situations. Topics include flow measurement, dimensional analysis and similitude, flow in pipes, ducts, and open channels, fluid machinery, and more. To enhance student learning, the book incorporates numerous pedagogical features including chapter summaries and learning objectives, end-of-chapter problems, useful equations, and design and open-ended problems that encourage students to apply fluid mechanics principles to the design of devices and systems. This informative reference offers and overview of the techniques used
to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Advanced techniques in computational fluid dynamics are presented, including direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, boundary-fitted grids, and free surface flows. 100 illus.

Pipe Flow provides the information required to design and analyze the piping systems needed to support a broad range of industrial operations, distribution systems, and power plants. Throughout the book, the authors demonstrate how to accurately predict and manage pressure loss while working with a variety of piping systems and piping components. The book draws together and reviews the growing body of experimental and theoretical research, including important loss coefficient data for a wide selection of piping components. Experimental test data and published formulas are examined, integrated and organized into broadly applicable equations. The results are also presented in straightforward tables and diagrams. Sample problems and their solution are provided throughout the book, demonstrating how core concepts are applied in practice. In addition, references and further reading sections enable the readers to explore all the topics in greater depth. With its clear explanations, Pipe Flow is recommended as a textbook for engineering students and as a reference for professional engineers who need to design, operate, and troubleshoot piping systems. The book employs the English gravitational system as well as the International System (or SI).

Anderson's book provides the most accessible approach to compressible flow for Mechanical and Aerospace Engineering students and professionals. In keeping with previous versions, the 3rd edition uses numerous historical vignettes that show the evolution of the field. New pedagogical features--"Roadmaps" showing the development of a given topic, and "Design Boxes" giving examples of design decisions--will make the 3rd
edition even more practical and user-friendly than before. The 3rd edition strikes a careful balance between classical methods of determining compressible flow, and modern numerical and computer techniques (such as CFD) now used widely in industry & research. A new Book Website will contain all problem solutions for instructors. Cavitation and Bubble Dynamics deals with fundamental physical processes of bubble dynamics and cavitation for graduate students and researchers. The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially
subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows. Study faster, learn better--and get top grades with Schaum's Outlines! Millions of students trust Schaum's Outlines to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. Use Schaum's Outlines to:

- Brush up before tests
- Find answers fast
- Study quickly and more effectively
- Get the big picture without spending hours poring over lengthy textbooks
- Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

This Schaum's Outline gives you:

- A concise guide to the standard college course in fluid dynamics
- 480 problems with answers or worked-out solutions
- Practice problems in multiple-choice format like those on the Fundamentals of Engineering Exam
- Bernoulli's equation, Froude's momentum theory, the Kutta-Zhukovsky transformation

This new text provides clear explanations of the physical phenomena encountered in compressible fluid flow by providing more practical applications, more worked examples, and more detail about the underlying assumptions than other texts. Its broad topic coverage includes a thorough review of the fundamentals, a wide array of applications, and unique coverage of hypersonic flow. This is the ideal text for compressible fluid flow or gas dynamics courses found in mechanical or aerospace engineering programs.

This book provides a self-contained introduction to the simulation of flow and transport in porous media, written by a developer of numerical methods. The reader will learn how to implement reservoir simulation models and computational algorithms in a robust and efficient manner. The book contains a large number of
numerical examples, all fully equipped with online code and data, allowing the reader to reproduce results, and use them as a starting point for their own work. All of the examples in the book are based on the MATLAB Reservoir Simulation Toolbox (MRST), an open-source toolbox popular in both academic institutions and the petroleum industry. The book can also be seen as a user guide to the MRST software. It will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods. This title is also available as Open Access on Cambridge Core.

The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject. This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas
dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.

Copyright code: 68e9c83a5bb5a4941abfadb01a524d4c